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Abstract– Self Organizing Maps or SOMs are mostly used to 
represent a multidimensional data in much lower dimension 
e.g. usually in one or two dimensions, Clustering, Exploratory 
data analysis and visualization, Supervised data classification, 
Sampling, Feature extraction, Data interpolation etc. In this 
paper we consider neuron societies where there are many 
different types of interactions. In one society, a neuron is 
connected with others only by the distance between two 
neurons. In another one, a neuron is connected with others by 
similarity between neurons, and so on. We here choose a 
special case where the interaction between neurons is weighted 
by the distance between them. This simplification aims to 
apply the new method to the creation of self-organizing maps. 
With this research, we expect new types of self-organizing 
maps to appear, ones which take into account the interactions 
between neurons. Here I have taken data of an automobile 
industry in Japan over a span of years and analyzed those 
data. 

Keywords– Self Organizing Map, SOM, Artificial Neural 
Network, Neurons, Society of neurons, Social Interaction, 
PCA 

I. INTRODUCTION 
The self-organizing map (SOM) [1] is one of the most 

well-known techniques in neural networks. In particular, 
the SOM is commonly used for the visualization of 
complex data. Contradictorily, one of the main problems of 
the SOM is that it is difficult to represent final SOM 
knowledge. This is because self-organizing maps are 
generally only concerned with competition and cooperation 
between neurons, without due attention being paid to 
visualization in the course of learning. Thus, there have 
been many attempts to visually represent SOM knowledge 
[1], [2], [3], [4], [5], [6], [7], [8], [9]. However, it is still 
presently difficult to visualize SOM knowledge clearly; 
thus, the present study is an additional attempt at clearly 
visualizing SOM knowledge. 

The hypothetical improved visualization is possible by 
enhancing the characteristics common to neurons based 
upon their interactions. In addition, our method can be used 
to control the degree of interaction or cooperation, which 
contributes to the better visualization of SOM knowledge. 
Similar method is applied to the analysis of Japanese 
automobile production for a period of twenty years. The 
automobile industry underwent drastic changes during these 
years due to severe competition in the development of 
environmentally friendly and fuel-efficient cars, and in 
reducing production costs. However, because of the lack of 
the methods to clarify the overall characteristics of the 
automobile industry, it has been difficult to clarify the main 
characteristics of automobile production. This method is 
expected to focus upon the important characteristics of the 
automobile industry through social interaction, because two 

neurons with similar outputs interact with each other. Even 
if the conventional SOM does not create interpretable 
representations, our method can be used to create 
interpretable representations by controlling the degree of 
interaction. 

Fig. 1 Social Interaction from an initial state (a) to a final state (d) 

In Section II, given the explanation of a concept of 
social interaction and how to compute social interaction. 
Then, the method is applied to the self-organizing maps. 
Here I define the KL-divergence between neurons in 
interaction and usual neurons. By minimizing the KL-
divergence, I derive the optimal outputs and connection 
weights. In Section III, the experimental results applied to 
the extraction of characteristics of automobile production 
from the period of 1993 to 2011 in Japan are presented. I 
will first determine the optimal representation to maximize 
mutual information between neurons and input patterns. 
Then, I will try to interpret connection weights. In the 
discussion section, I will try to interpret the final 
representations based on the events and incidents of this 
period. 

II. THEORY AND COMPUTATIONAL METHODS

A. Social Interaction 
Here we consider societies formed by the 

interaction of neurons. Suppose that two neurons’ outputs 
are represented by vj and vm, respectively as shown in 
Figure 1. Then, the interaction is defined by the product of 
two neurons’ outputs: 

interactjm = vjvm    (1) 
In addition, the distance between two neurons should be 
considered. Now, suppose that the distance is represented 
by hjm. Then, the interaction is modified as 

interactjm = vjhjmvm   (2) 
The output from the jth neuron is defined by the sum of all 
interaction of the jth neuron and computed by 
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                                                m=M 

                           interactj = ∑vjhjmvm                         (3) 

m=1 

The relative output after the interaction becomes 
                m=M 

q(j) = (interactj)/∑interactm      (4) 
                   

m=1 

Then, let us suppose that neurons gradually transform from 
an initial state of society without interaction in Figure 1(a) 
to a final state with interaction in Figure 1(d). Thus, I 
should develop a method to model this transformation. 
Now, let p(j) denote the relative output without the 
interaction of the jth neuron. Then, this neuron must imitate 
the corresponding neuron with interaction. The difference 
between two types of neurons can be defined by the KL-
divergence: 
                                        M 

                                  D = ∑p(j)log p(j)/q(j)         (5) 

                
j=1 

A society of neurons is formed by minimizing this KL-
divergence. By minimizing this divergence, the relative 
output p(j) becomes closer to the output after the 
interaction. 
 
B. Application to SOM 
 Let us apply the concept of a society of neurons to 
the self-organizing maps. The sth input pattern of total S 
patterns can be represented by xs = [x1

s,x2
s,…,xL

s]T where s 
= 1,2,..,S. Connection weights into the jth neuron of total M 
neurons are computed by wj = [wj

1,wj
2,…,wj

L]T, j = 
1,2,…,M. Then the jth neuron’s output can be computed by 

              vj
s α exp{-½ (xs-wj)T ˄ (xs-wj)}      (6) 

where xs and wj are supposed to represent L-dimensional 
input and weight column vectors, where L denotes the 
number of input units. The L X L matrix ˄ is called a 
“scaling matrix”, and the klth element of the matrix is 
denoted by (˄)kl is defined by 

(˄)kl = δkl
ଵ

ఙഀ
మ k,l = 1,2,….,L     (7) 

where σα is a spread parameter and is defined by 

  σα = 	
ଵ

ఈ
        (8) 

Now let us consider the neighbourhood function generally 
used in self organizing maps 
 

  hjc α exp( - 
ฮೕି	‖

ଶఙം
మ

ଶ

)       (9) 

where rj and rc denote the position of the jth and the cth unit 
on the output space and σγ is a spread parameter. Using this 
neighborhood function, we have 

 )()(exp 2
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    (10) 

The relative output of the jth neuron with interaction can be 
obtained by 
 

q(j|s) = (interactj
s)/(∑ ௦ெݐܿܽݎ݁ݐ݊݅

ୀଵ )  (11) 
 
Let p(j|s) denote the relative output from the jth neuron 
without interaction; then KL divergence is defined by 
 

D = ∑ ሻௌݏሺ
௦ୀଵ ∑ pሺsሻpሺj|sሻlog

ሺ|௦ሻ

ሺ|௦ሻ
ெ
ୀଵ    (12) 

 
By minimizing this divergence we have, 
 

p*(j|s) = 
୯ሺ୨|ୱሻ	ୣ୶୮ )()(2

1
j

sT
j

s wxwx 

∑ ୯ሺ୫|ୱሻ	ୣ୶୮ )()(2
1

m
sT

m
s wxwx ಾ
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 (13) 

 
Then by substituting p(j|s) for p*(j|s) we have the well 
known well known free energy function [10], [11] 
 
F = 

ఈଶߪ2 ∑ pሺsሻ log∑ qሺj|sሻ	exp )()(2
1

j
sT

j
s wxwx ெ

ୀଵ
ௌ
௦ୀଵ  

     

        (14) 
 

By differentiating the free energy, we can have connection 
weights 

  wj = 
∑ ∗ሺ|௦ሻ௫ೞೄ
ೞసభ

∑ ∗ሺ|௦ሻೄ
ೞసభ

    (15) 

 
 

III. EXPERIMENTS 
A. Data Description and Network Architecture 
The automobile industry has undergone drastic changes 
these days because of the increasing interest in 
environmental problems and severe competition between 
different automobile manufacturers around the world. In 
particular, the Japanese automobile industry has undergone 
major changes in developing advanced technologies and 
lowering the costs of manufacturing. In advanced 
technologies, much focus has been upon more fuel-
efficiency automobiles, like electric, hybrid, and fuel cell 
vehicles. In addition, the high appreciation of the Japanese 
yen has made it impossible to produce automobiles with 
lower costs in Japan. Thus, it is certain that these drastic 
changes have been observed in the production and sales of 
automobiles in Japan. However, it has been difficult to 
extract the overall characteristics from complex automobile 
production and sales data. I here focus upon the analysis of 
automobile production and try to show the main 
characteristics of the production over these twenty years. 
 

The total data for automobile production ranged 
between the years 1993 and 2011. The numbers of variables 
were eight, namely, standard, small, and mini passenger 
cars; standard, small, and mini trucks; and large and small 
buses. The data was normalized to range between zero and 
one. I have examined what kinds of characteristics could be 
obtained by visualizing the data by our method and 
compared the results with those by the conventional SOM. 
Figure 2 shows the network architecture for the automobile 
data. In the network, we had eight input units, 
corresponding to the eight variables used. The number of 
neurons in the output layer was 288 (24×12). I have used 
the large size of the network to clearly visualize the final 
results. 
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Fig. 2  Network architecture for the automobile data 

 
Fig. 3  Mutual information as a function of the parameter α(a) and with a 
fixed value (1/10) of the parameter α(b) 
 

B. Optimal representation and mutual information 
The social interaction method can produce many different 
types of networks by taking into account the degree of 
interaction and competition. The degree of interaction can 
be changed through the parameter α. Thus, we must choose 
an appropriate representation among them. One of the 
possibilities is to use mutual information between neurons 
and input patterns. When this mutual information is 

increased, neurons tend to contain more information on 
input patterns. Mutual information can be defined by 

I(α) = ∑ pሺsሻ∑ pሺsሻpሺj|s; αሻ log
୮ሺ୨|ୱ;ሻ

୮ሺ୨;ሻ
ெ
ୀଵ

ௌ
௦ୀଵ  (16) 

One of the problems with this mutual information is that it 
increases constantly when the Gaussian width decreases or 
the parameter α increases, as shown in Figure 3(a). Thus, 
we must assign a constant value to the parameter α. Note 
that in actual learning, the parameter α was changed from 
one to ten, and the parameter was fixed only for computing 
mutual information. Figure 3(b) shows this mutual 
information when the parameter α was set to 1/10. As can 
be seen in the figure, mutual information increased initially 
and reached its highest point when the parameter α was 4. 
Then, mutual information gradually decreased. Though 
mutual information increased when the parameter α was 
increased in Figure 3(a), the actual mutual information did 
not increase when the parameter α was increased from 4 in 
Figure 3(b). Thus, we can say that when the parameter α 
was 4, we could obtain an optimal representation which had 
the maximum amount of information on input patterns. 

 
Fig. 4  U matrices when the parameter α was changed from 1(a) to10(i) 

 
Figure 4 shows the U-matrices when the parameter 

α was changed from 1(a) to 10(i). When the parameter α 
was 1 in Figure 4(a), the centralized class boundary was too 
huge. When the parameter α was 2, the huge class boundary 
became smaller, see Figure 4(b). When the parameter a was 
further increased to 3 in Figure 4(c), a class boundary in 
warmer colors on the upper side of the matrix became 
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clearer, and other class boundaries began to appear on the 
lower side of the matrix. When the parameter α was 4 in 
Figure 4(d), the class boundary on the upper side of the 
matrix became the clearest and the other boundaries on the 
lower side became much clearer. Then, when the parameter 
α was further increased from 5 in Figure 4(e) to 10 in 
Figure 4(i), the class boundaries began to gradually 
deteriorate. These results corresponded to those of mutual 
information in Figure 3(b). When mutual information was 
4, we could obtain maximum information, and then mutual 
information gradually decreased. When mutual information 
reached its maximum, the clearest representation in Figure 
4(d) could be obtained. 

 

 
Fig. 5  U matrices (1) and labels(2) when the parameter α was 4 

 
C. Interpretation of optimal representation 

I interpret the optimal representation with 
maximum mutual information when the parameter α was 4. 
Figure 5 shows the U-matrix and labels with class 
boundaries when the parameter α was 4. As shown in 
Figure 5(1), a clear class boundary in warmer color could 
be detected on the upper side of the matrix. Additionally, 
several minor class boundaries were located on the lower 
side of the matrix. From these boundaries and labels in 
Figure 5(2), the data was classified into three classes 
(periods). The first period (a) represented the production 
from 1993-1998. The second period ranged between 1999 
and 2006, and the third period between 2007 and 2011. In 
the third period, the period between 2007 and 2008 and the 
year 2011 were separated from the period in the middle. In 
addition, we can see that in the first and the third periods, 
the data were arranged from right to left. On the other hand, 
in the second period, the data were arranged from left to 
right. 

 
Fig. 6  Connection weights from all variables when the parameter α was 4 

 
Figure 6 shows connection weights from the eight 

variables. As shown in Figure 6(a3), in the second and third 
periods, the production of mini-cars was very large, shown 
in warmer colors. On the other hand, standard, small and 
mini trucks were more heavily produced in the first period, 
in Figure 6 (b1), (b2) and (b3). In the third period, standard 
passenger cars and small buses were produced largely, 
represented by warmer colors in Figure 6(a1) and (c2). In 
addition, for all variables, the parts on the left hand at the 
bottom were very low in dark blue. This means that the 
production of automobiles was the lowest around 2011. 
 Figure 7 shows connection weights in nine typical 
neurons located and shown on the map in Figure 5(2). In 
the first period, the production of small passenger cars and 
trucks was large and the levels of production decreased 
gradually from (a3) to (a1). In the second period, the 
production gradually increased. In particular, the production 
of mini-cars increased from left (b1) to right (b3). In the 
beginning of the third period, in Figure 7(c3), the 
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production of standard passenger cars and small buses were 
much higher than that of any other type of cars. However, 
the production decreased gradually in Figure 7(c2). Finally, 

in 2011, shown in Figure 7(c1), though overall production 
was very low, the production of mini-cars remained 
relatively higher. 

 

 

 
Fig. 7  Connection weights into six typical neurons in Fig 5(2) 
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Fig.8 Umatrix (a) and labels (b) by the conventional SOM 

 
Fig. 9  Information content of neurons by social interaction (a) and by 

SOM (b) 

 
D. Comparison of SOM wth PCA 

We here compare the results of our method with 
those obtained by the standard SOM and PCA. Figure 8 
shows the U-matrix and labels by the conventional SOM. 
We used the SOM toolbox for the experiments [4]. As can 
be seen in Figure 8(a), two class boundaries in warmer 
colors appeared on the upper side and the lower left hand 
side of the matrix, but they were rather ambiguous. Labels 
in Figure 8(b) show that the class boundaries in Figure 8(b) 
corresponded to those in Figure 5(2). 

Figure 9 shows information contained in the jth 
neuron on the input neurons. Let p(k|j) denote the relative 
output of the kth input neuron for the jth neuron; then, 
information for the jth neuron on the input neurons is 
defined by 

Ij = log L + ∑ pሺk|jሻ log ሺ݇|݆ሻ
ୀଵ    (17) 

where 

 p(k|j) = 
௪ೕೖ

∑ ௪ೕ
ಽ
సభ

    (18) 

 
Figure 9 shows this information computed by the 

social interaction (a) and SOM (b). As shown in Figure 
9(a), we could see three classes on the map by the social 
interaction. On the other hand, by the SOM, as in Figure 
9(b), boundaries between three classes were not always 
clear. On the lower left hand side of the maps by the social 
interaction and SOM, neurons with the highest information 
on input neurons appeared. This part corresponded to year 
2011, where only mini-car was produced largely. This 
proves that the year 2011 showed the most explicit 
characteristic of all periods. Namely, the number of mini 
cars was much larger than any other cars in terms of 
production. 

 

  

  
Fig. 10  Results of PCA analysis applied to the data (a), connection 
weights by SOM (b) and those by social interaction (c) 
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Figure 10 shows the results of PCA applied to data 
itself (a), connection weights by the conventional SOM (b) 
and social interaction (c). With the PCA applied to the data 
itself, seen in Figure 10(a), three classes were observed but 
they were extensively overlapping. Figure 10(b) shows the 
results of PCA applied to the connection weights by the 
conventional SOM. Though three classes could be 
observed, many weights were scattered between 
boundaries. Finally, when the social interaction was used in 
Figure 10(c), the classes were clearly separated 

 
E. Discussion 
1) Summary of Results: Let us summarize the main results 
of the automobile production. In 2000s, the automobile 
production gradually decreased as shown in Figure 7(a3) to 
(a1). In the second period (the beginning of 1990s), the 
production inversely increased, and in particular, the 
production of mini-cars increased as shown in Figure 7(b3) 
to (b1). Then, in the beginning of the third period (2007 and 
2008), the production of standard passenger cars and small 
buses increased significantly, shown in Figure 7(c3). The 
production then decreased again in Figure 7(c2). Finally, in 
2011, only the production of mini-cars maintained 
relatively high production rates, while all the other types of 
car showed rather low production rates, as shown in Figure 
7(c1). 
 
2) Explaining by Actual Events: These characteristics can 
be explained by the two important factors occuring in these 
periods: the revised regulation law for mini cars and the 
economic crisis called the "Lehman shock." 
 First, the class boundary between the first and 
second period could be explained by the revised regulation 
law for mini cars in 1998. In the first period, all types of 
cars were being produced equally, except standard and 
mini-cars and small buses. In the 2000s, only the 
production of mini-cars increased, albeit gradually. We 
examined the events and incidents around this boundary 
period, and found that the automobile regulation by the 
Japanese government was revised in 1998. In the revision 
of the safety regulation for the mini-cars in 1998, the size of 
mini-cars became larger and the safety levels became 
higher, obtaining performance comparable to that of larger 
cars. Because of this revision of the regulation, the Japanese 
automobile market was drastically changed around 1998. 
 Second, the third period was explained by the 
economic crisis of 2008. We could observe the high 
production in standard passenger cars and small buses in 
the beginning of the third period in Figure 7(c3) around 
2007 and 2008. In this period, we recognized the well-
known "Lehman Shock" phenomenon following the 
economic crisis, which damaged the Japanese automobile 
industry. In particular, the increase in the production of 
standard passenger cars in this period was one of the main 
causes of troubles in the automobile industry. 
 
3) Implication for Automobile Industry: Considering these 
results and facts, we can point out two factors concerning 
the automobile industry, namely, policy and planning. 

 First, one important factor in the development of 
automobile industry is the policy for the industry. It is 
necessary to guide the industry through the effective and 
industrial policy, conceptualized and implemented by the 
government. In our experimental results, the revised 
regulation law for the mini-cars drastically changed the 
market, leading to a sharp increase in the production of 
mini cars. 

Second, production should be more carefully 
planned. The increase in production in the beginning of 
2000s had long lasting negative effects on the automobile 
industry. We observed that the production in the beginning 
of 2000s was focused on mini cars, meaning that smaller 
cars were generally preferred. Despite this, standard 
passenger cars were largely produced in the beginning of 
the period. Even if the majority were for export purposes, 
more restrained production should have been expected, 
which would have led to lessened damages from the 
economic crisis. 
 
4) Problems of the Method: Though our method has shown 
better performance in visualization, we should point out 
two problems, namely, optimality and topological 
preservation. 

First, we used mutual information to obtain 
optimal representations. In other words, mutual information 
was used to choose the optimal values of the parameter a. 
When mutual information increases, neurons tend to 
respond very specifically to input patterns. By increasing 
mutual information, representations become simpler. 
However, one of the problems is that we did not increase 
this mutual information, but rather decreased KL-
divergence. Thus, we need to examine the relation between 
KL-divergence and mutual information more carefully. 

Second, we should examine the relations between 
visualization and topological preservation. We have shown 
that the method worked better to clarify class boundaries. 
When visualization can be improved, it may happen that 
topological relations cannot be maintained. This is because 
better visualization enhances some parts of input patterns, 
reducing topological preservation. However, we have not 
yet finished examining the relations between the improved 
performance and topological preservation. Even if the 
performance in visualization is improved, if topological 
relations are not preserved, then the reliability of the final 
maps decreases. Thus, we should more precisely examine 
the relationship between visual performance and 
topological preservation. 
 
5) Possibilities of the Method: The main possibilities of the 
method are summarized by two points, namely, flexibility 
and new self-organizing maps. 

First, one of the main beneficial characteristics of our 
method is its flexibility. Fundamentally, we aim to create a 
general theory of social interaction. For that, we must take 
into account many types of interactions. For simplification, 
social interaction is supposed to be the product of two 
neurons; thus, in this study, only the distance between two 
neurons was taken into account. However, it is easy to 
include any kind of interaction only by substituting the 
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present probabilities q(j | s) by new ones. For example, we 
can imagine a case where even if the distance between 
neurons is very large, they still may strongly be connected 
with each other. We can take into account this kind of 
interaction. 

Second, we can create new types of self-organizing 
maps based upon the social interaction. As mentioned 
above, our method can create a variety of interactions 
between neurons. Based upon these different types of 
interaction, it is possible for networks to self-organize, 
leading to characteristics different from those by the 
conventional SOM. If we take into account the different 
types of cooperation between neurons, new types of self-
organizing maps can be created. 
 

IV. CONCLUSION 
In this chapter, we proposed a new type of information-

theoretic method in which neurons are supposed to form a 
society. In this society, the interaction of neurons is the 
product of all neighboring neurons’ outputs weighted by 
their distance. The individual neuron tries to imitate this 
interaction as much as possible. The difference between 
neurons with and without interaction is computed by the 
KL-divergence. By minimizing the KL-divergence, we can 
obtain the optimal outputs of the neuron and the free 
energy. By differentiating the free energy, we can obtain 
the re-estimation rules for connection weights. 

We applied our method to the data of the 
production of Japanese automobiles during the period of 
1993 and 2011. We can summarize the final results from 
two points of view. Technically, the new method showed 
better performance in clarifying class boundaries, compared 
with the conventional SOM. Explicit class boundaries were 
due to the interaction of neurons, similar neurons 
interacting strongly with each other in terms of distance and 
firing rates. Second, the strong class boundaries were traced 
back to the important events or incidents which occurred in 
the period. For example, the class boundary between the 
first and the second period was due to the revision of 
regulation law for mini-cars. Thanks to this revision, the 
number of mini-cars in production increased gradually. In 
the third period, a significant production increase at the 
beginning of the period was accompanied by a decrease in 
production of other models, with only mini-cars being 
largely produced in the end. This period was well explained 
by the economic crisis in 2008. 

Though there are some problems such as 
optimality and topological preservation, as explained in the 
discussion section, we have shown that it is possible to 
create different types of neuron societies, where different 
kinds of interaction can be implemented. 
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